
Software Engineering

and Architecture

Concurrency

A Classic Java Take on it

Disclaimer…

• I have relatively little experience in large scale, realistic,

development of parallel and concurrent programs

• The ‘handling concurrency’ scene is a vast topic, and has

transformed considerably over the last decade!

– Multicore processors

– And OS/Libraries to take advantage of them !

• We will only treat classic and basic issues and solutions!

– So, read up on the material once you are ‘out there’…

– The problems are the same, but solutions become better…

CS@AU Henrik Bærbak Christensen 2

Motivation

• Concurrency = many ‘objects’ executing at the same time

• Why?

• Modelling: This is how the world is!

– Many people working in parallel, collaborating, sharing…

• Quality Attributes of our architecture

– Performance

– Responsiveness / Availability

CS@AU Henrik Bærbak Christensen 3

Responsiveness

• Sometimes our computations

take quite a while to complete

• Example:

– User 1 searches for all flights to

Bali

• Server is busy requesting a lot of

external booking systems

– Meanwhile

– User 2 wants to search for flights

to Tokyo

• But what happens here?

CS@AU Henrik Bærbak Christensen 4

Solution

• Just like one cashier in Føtex can only handle a limited

number of customers at the same time; so can a single

thread

• Solution: Employ more cashiers / threads!

• However… Poses its own set of challenges!

CS@AU Henrik Bærbak Christensen 5

Analyzing Code…

• … is based upon a sequential execution of statements

• Exercise: What is ‘a.balance()’ after the last withdraw()?

– Assuming the balance is 0.00 at the start…

CS@AU Henrik Bærbak Christensen 6

interface Account {

public boolean deposit(long amount);

public boolean withdraw(long amount);

public long getBalance();

}

class SingleThread {

public static void main(String[] args) {

Account a = new AccountImpl();

a.deposit(500);

a.withdraw(100);

a.withdraw(100);

}

Program Thread…

• The program thread weaves through methods and

statements…

• In machine code

– Register PC

• Program counter

– Increments for every instruction

– Some instructions change PC

• JMP 47 =

– Change PC to address 47

• I.e. a method call…

CS@AU Henrik Bærbak Christensen 7

main

a
<<create>>

deposit

withdraw

withdraw

Two Threads!

CS@AU Henrik Bærbak Christensen 8

Forelæseren lønkonto

deposit

withdraw

withdraw

PBS

Three Types of Concurrency

• When more than one thread executes in a program, we

say that it is concurrently executed, it is a concurrent

program.

• Three categories of concurrent programs

– Independent threads

• Like running your music player program while coding in IntelliJ

– Shared resources

• Like two threads reading/writing to the same account object

– Collaborating threads

• Like one thread inserting into a buffer and assuming some other

thread will remove those items from the buffer

CS@AU Henrik Bærbak Christensen 9

Java

• Java was one of the first mainstream languages to have

threads as part of the language!

– Before that,

it was the job of the OS

• Processes

– Coded using OS libraries

• Core class:

– Thread

CS@AU Henrik Bærbak Christensen 10

Thread

• Anatomy

– Create a thread

– Call start();

• Will execute ‘run()’

• Exercise

– How many threads?

– What does it do?

– And what is the output?

CS@AU Henrik Bærbak Christensen 11

Output

• The hallmark of concurrent programs: non-determinism

• Welcome to debugging hell!!!

• Welcome to testing hell!!!

– Testing is almost impossible, as there is a lot of randomness

involved

CS@AU Henrik Bærbak Christensen 12

Scheduling

• Threads execute concurrently

– Abstractly speaking, even if they do not always in practice !

• In my youth we had one CPU

– Today you 4, 8, 12, …, and several thousands in your GFX card

• Concurrency is (partly) simulated by

• Thread scheduling

– Preemptive:

• Thread runs for n milliseconds, is interrupted and the scheduler then

picks the next thread for execution

– (Non-preemptive): Thread ‘yields()’ to signal thread change…

CS@AU Henrik Bærbak Christensen 13

Thread States

• Any thread in a program are in one of several states

• An incomplete list for Java includes

– RUNNABLE: running or able to run (‘running’/’ready’)

• 100 threads may be runnable but only 1 [2, 4, 8] are actually

executing code, the others are waiting for the scheduler to switch to

them (ready/parked)

– BLOCKED: not executing, but waiting for a lock

• Used to handle ‘shared resources’, see later…

– WAITING: not executing, but in a wait-set, waiting

• Used to handle ‘producer-consumer’ / collaborating threads

CS@AU Henrik Bærbak Christensen 14

VisualVM can show thread states

• Runnable threads are either running or parked…

CS@AU Henrik Bærbak Christensen 15

Thread States

CS@AU Henrik Bærbak Christensen 16Source: www.uml-diagrams.org

Subclassing? No no no ☺

• Program to an interface! Runnable interface

• Process

– Provide Thread

object with the

Runnable instance

• Exercise:

– What design pattern?

CS@AU Henrik Bærbak Christensen 17

Overviewing Threads

• You may install ‘visualvm’, and overview a lot of the inner

workings of your application’s threads (and heap and…)

CS@AU Henrik Bærbak Christensen 18

	Slide 1: Software Engineering and Architecture
	Slide 2: Disclaimer…
	Slide 3: Motivation
	Slide 4: Responsiveness
	Slide 5: Solution
	Slide 6: Analyzing Code…
	Slide 7: Program Thread…
	Slide 8: Two Threads!
	Slide 9: Three Types of Concurrency
	Slide 10: Java
	Slide 11: Thread
	Slide 12: Output
	Slide 13: Scheduling
	Slide 14: Thread States
	Slide 15: VisualVM can show thread states
	Slide 16: Thread States
	Slide 17: Subclassing? No no no
	Slide 18: Overviewing Threads

