/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Concurrency
A Classic Java Take on it

eV Disclaimer...

AARHUS UNIVERSITET
* | have relatively little experience in large scale, realistic,
development of parallel and concurrent programs @

« The ‘handling concurrency’ scene is a vast topic, and has
transformed considerably over the last decade!

— Multicore processors
— And OS/Libraries to take advantage of them !

* We will only treat classic and basic issues and solutions!

— S0, read up on the material once you are ‘out there’...
— The problems are the same, but solutions become better...

V4V Motivation

AARHUS UNIVERSITET
« Concurrency = many ‘objects’ executing at the same time
¢ Why?

« Modelling: This is how the world is!
— Many people working in parallel, collaborating, sharing...

« Quality Attributes of our architecture
— Performance
— Responsiveness / Availability

/v Responsiveness

AARHUS UNIVERSITET

e Sometimes our computations
take quite a while to complete

 Example: M Gocket oliemtsocket — mull;
t i
— Use_r 1 searches for all flights to iﬂgﬁ;g;;};:;;;h;f-iem'-"smet-ﬂmp“*f'
Ball lfh:i:gfgli::fp:intln{”Sewer Stopped. ™)
. . retum,'
 Server is busy requesting a lot of }

throw new BEontimeException|(

eXternal bOOklng SyStemS "Error accepting client connection", e);
. i
— {
MeanWhIIe \prcmssﬂlienmewest{c'.lientSc:c'.ket} 5
} catch (Exception =) {

- User 2 WantS tO SearCh fOI’ ﬂlghtS J//1log exception and go on to next regqunest.
to Tokyo y o

« But what happens here?

VeV Solution

AARHUS UNIVERSITET

« Just like one cashier in Fgtex can only handle a limited
number of customers at the same time; so can a single
thread

« Solution: Employ more cashiers / threads!

 However... Poses its own set of challenges!

/v Analyzing Code...

AARHUS UNIVERSITET
« ... Is based upon a sequential execution of statements

interface Account { class SingleThread {

public boolean deposit(long amount); public static void main(string[] args) {

public boolean withdraw(long amount); Account a = new AccountImpl();

public Tong getBalance();
) a.deposit(500);

a.withdraw(100);
a.withdraw(100);

« Exercise: What is ‘a.balance()’ after the last withdraw()?
— Assuming the balance is 0.00 at the start...

/v

AARHUS UNIVERSITET
» The program thread weaves through methods and

Program Thread...

statements... i
J“,_...__<m=a“z—_é_
* In machine code _|__deposit _
— Register PC n" -
* Program counter J__withdraw
— Increments for every instruction Mf—— ——3}’
— Some instructions change PC \| _withdraw ,
o JMP 47 = fe—— s s seses s

— Change PC to address 47
* |.e. a method call...

 T— —

CS@AU Henrik Baerbak Christensen 7

Vav Two Threads!

AARHUS UNIVERSITET
Forelaseren lenkonto PBS
, < W'ithdlLalv

withdraw

CS@AU _I' Henrik Bagrbak Christensen ' 8

v Three Types of Concurrency

AARHUS UNIVERSITET

 When more than one thread executes in a program, we
say that it is concurrently executed, it is a concurrent
program.

« Three categories of concurrent programs

— Independent threads

 Like running your music player program while coding in IntelliJ
— Shared resources

 Like two threads reading/writing to the same account object
— Collaborating threads

» Like one thread inserting into a buffer and assuming some other
thread will remove those items from the buffer

eV Java

AARHUS UNIVERSITET

« Java was one of the first mainstream languages to have
threads as part of the language!

— Before that, ;lmtl% class ThreadDemol {
. . 110 | 8] C 5 C1C
it was the job of the OS P hrea
 Processes a. ﬁ;}th, tqtmt{h
}

— Coded using OS libraries }

class OQutputThread extends Thread
private char c;

OutputThread(char outputChar) {
¢ = outputChar;

« Core class: }
public void run() {
— Thread for (int i=0; i<100; i++) {
e Part of a framework! : System.out.print(c); System.out.flush();

}
CS@AU Henrik Baerbak (}

/v

AARHUS UNIVERSITET
public class ThreadDemol {
° /\I]Eit()rT])/ public static \ main(String[] args)

Thread a = new QutputTh ('a');
— Create a thread Thread b = new OutputThread('b');
a.start(); b.start();
— Call start(); }

}
» Will execute ‘run()’
class OutputThread extends Thread {

private char c;

QutputThread(char outputChar) {

 EXxercise ¢ = outputChar;
}
— How many threads? '
. public void run() {
— What does it do? for (int i=0: j_-:i{ilﬂ; i++) {

1
System.out.print(c); System.out.flush();

— And what is the output?

CS@AU Henrik Baerbak Christensen 11

/v Output

AARHUS UNIVERSITET
« The hallmark of concurrent programs: non-determinism

PS D:‘\work'teaching\SWEA-E17%codelab‘threads‘thread-demol> java ThreadDemo
laaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbhb
abb

PS D:‘\work\teaching\SWEA-E17\codelab‘\threads\thread-demol> java ThreadDemo

aaaaaaaaaaaaaaaaaaaaaaaaaaaababbbbbbbbbbbbbbbbbbbbbbbbaabbbbbaaabbbbbbbbbbbbbbbb

baaaaabbaaaaaaaaaaaaaaaaaaaaabbppooobopopbbopppobboooobbbbbbbbbbbbbbbbbbbbbbbbbb

PS D:‘\work\teaching\SWEA-E17"\codelab‘threads‘\thread-demol> java ThreadDemo
aaabbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaabaaabbb
bb

PS D:‘\work\teaching\SWEA-E17%codelab‘\threads‘\thread-demol>

« Welcome to debugging hell!!!

« Welcome to testing hell!!!

Testing is almost impossible, as there is a lot of randomness
iInvolved

CS@AU Henrik Baerbak Christensen 12

/v Scheduling

AARHUS UNIVERSITET

} « Threads execute concurrently 1

— Abstractly speaking, even if they do not always in practice !

* In my youth we had one CPU
— Today you 4, 8, 12, ..., and several thousands in your GFX card

« Concurrency is (partly) simulated by

« Thread scheduling

— Preemptive:

« Thread runs for n milliseconds, is interrupted and the scheduler then
picks the next thread for execution

— (Non-preemptive): Thread ‘yields()’ to signal thread change...

CS@AU Henrik Baerbak Christensen 13

eV Thread States

AARHUS UNIVERSITET
* Any thread in a program are in one of several states

« An incomplete list for Java includes

— RUNNABLE: running or able to run (‘running?/’ready’)

» 100 threads may be runnable but only 1 [2, 4, 8] are actually
executing code, the others are waiting for the scheduler to switch to
them (ready/parked)

— BLOCKED: not executing, but waiting for a lock
 Used to handle ‘shared resources’, see later...

— WAITING: not executing, but in a wait-set, waiting
» Used to handle ‘producer-consumer’ / collaborating threads

eV VisualVM can show thread states

AARHUS UNIVERSITET

* Runnable threads are either running or parked...

CS@AU

Threads

Live threads: 41
Daemon threads: 9

Threads visualization

Timeline X
Show: Live Threads~ | Timeline: EL EL a
Name kll 15 AM 11:24:20 AM 11:24:25 AMa 11:24:35 AM Running Total -
B RMI TCP Accept-0 3,365,302 ms (100%) 3,365,302 ms | a
B RMI TCP Connection(2)-127.0.0.1 3,365,302 ms (100%) 3,365,302 ms]
E Session-HouseKeeper-369c02be-] 0ms (0%) 3,365,302 ms
@ Signal Dispatcher 3.365.302 ms (100%) 3,365,302 ms
O Thread-0 0ms (0%) 3,365,302 ms
B Connector-Scheduler-725e 516 0-1 | — 0ms (0% 3.242,338 ms
B qtp622625568-31 R, 34,995 ms (11%) 3,069,318 ms
B qtp622625568-32 I 45013 ms (48%] 936,117 ms
O qtp622625568-34 T s, 30.006 ms (3.2%] 936,117 ms [
B qtp622625568-35 I, 33.005 ms (35%] 935.116 ms
W qtp622625568-36 T, 37.002ms (4%] 935,116 ms
B qtp622625568-38 I 54.000ms (58%] 935,116 ms
W qtp622625568-39 I, =6.p0ams (3.9%) 935116 ms
B qtp62262556841 I 452,046 ms (42.3%] 935,116 ms
B qtp62262556842 I 40,994 ms (4.4%] 933,116 ms
B qtp62262556843 s 31.002ms (3.3%] 933.116 ms
B qtp62262556846 I, 30.002ms (2.2%] 933,116 ms
B qtp62262556847 . 47.008 ms (5%] 933,116 ms
B qtp62262556849 I s, 21.997 ms (26%] 841,099 ms
B qtp622625568-50 I 24,004 ms (25%) 841,099 ms |
B qtp622625568-51 I T, 41,998 ms (5%] 841,099 ms
O qtp622625568-52 s 21.992ms (27%] 802,097 ms
B qtp622625568-53 I T, 26.007 ms (3.2%] 802,097 ms
W qtp622625568-56 s 23.002ms (25%] 802,097 ms
B qtp622625568-57 T, 41.000 ms (5.7%] |~ 713,087 ms
B qtp622625568-58 I EEEETEEEEEEEEEmm——————mmm 6,005 ms (2.6%) 713,087 ms
B qtp622625568-59 e _______________________________ NN CENEEA N R
B qtp622625568-60 I) 438.054 ms (61.4%] 713,087 ms
B qtp622625568-61 I I, 9.006 ms (1.3%] 713,087 ms
O qtp622625568-62 . 41.010 ms (3.8%] 713.087 ms
B qtp622625568-64 I 13.993 ms (2%] | 713.087 ms ¥

M

Henrik Baerbak Christensen

[Running B Sleeping T Wait B Park [Monitor

15

b Thread States

AARHUS UNIVERSITET

state machine Thread States {protocol})

/ Runnable thread was selected by \

thread scheduler to runf

t.start/ thread terminated/

Thread.yield/

thread was suspended

_ by thread scheduler/ /

\ Thread.sleep(sleeptime)/ (\ sleeptime elapsed/
o.wait(timaout)/ thread terminated/ /

tjoin{timeout)/

Timed Waiting | o_notifyAll/

o.notify/ \
Y

LockSupport.parkNanos()/
——

rokSuppo rt.parkUntil{)/

N O-wait/ thread terminated/ _/

tjoin/ L o.notifyAllf
Waiting —
\ LockSupport.park/ o.notify/ \\

wait for lock to enter
\, synchro block or method ™, /

wait for lock to reenter Blocked monitor lock acquired/ /)
\synchro block or method — thread terminated/ /

CS@AU N~ urce: www.uml-diagrams.o 16

/v Subclassing? No no no ©

AARHUS UNIVERSITET
* Program to an interface! Runnable interface
e Process Mublic class ThreadDemo2 {

public static void main(String[] args) {
. . L a new Thread(new OutputRunnable('a')):
PrOVIde Thread 1read b = new Thread(new OutputRunnable('b'));

ObjeCt with the : a.start(): b.start():
Runnable instance b

class OutputRunnable implements Runnable {
private char c;

QutputRunnable(char outputchar) {
¢ = outputchar;

}

public void run() {

e EXercise: for (int i=0; i<100; ++i) {

System.out.print(c); System.out.flush();

— What design pattern?

CS@AU Henrik Baerbak Christensen 17

4

AARHUS UNIVERSITET

Overviewing Threads

* You may install ‘visualvm’, and overview a lot of the inner
workings of your application’s threads (and heap and...)

CS@AU

P8 VisualVM 1.4.2
File Applications View Tools Window Help

B| 3 & ® &

Applications X

=l Start Page = :é cloud. cave.main. CaveDaemaon (pid 31468) x|
¢ B Local

[=Jl=]

K] =]

JB tdea (pid 14831) rBOuemiew r@Mnnitnr r/ hreads r:Q,Sampler |
ea (pi)

| visualvm O cloud.cave.main.CaveDaemon (pid 31468)
é; org.gradle launcher GradleMain (pid

org.gradle.launcher.daemon.bootstr
_cave.main.CaveDaemon (pid 2

Threads

Live threads: 21

F Remote Daemon threads: 10

E\“E] VM Coredumps

Snapshots Timeline

Threads visualization

[a] Il [v]

X
Live Threads > | Timeline: & &,
Name |48 15 AM a Running Total -
istener 6,959 ms (100 5,959 ms | ~|
O Commoen-Cleaner 0ms 0 6.959 ms
@ Destroy]avavM 6,959 ms (L 6,959 ms
O Finalizer 0ms 5,959 ms [~
B JMX server connection timeout 27 0ms 6,959 ms
H gtp1984983378-13 6,959 ms 6,959 ms [
H qtp1984983378-14 6,959 ms 5,959 ms
M qtp1984383378-15 | 0ms 6.959 ms
M qtp1984983378-16 | 0ms 6.959 ms
W qtp1984983378-17] 0ms 6.959 ms |_|
M atn1984983378-18 @ 0ms 6.959 ms |~
1 L3

[Running [Sleeping [JWait [Park [EH Monitor

(1]

Henrik Baerbak Christensen

18

